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ABSTRACT: On average, 2-m temperature forecasts over North America for lead times greater than two weeks have
generally low skill in operational dynamical models, largely because of the chaotic, unpredictable nature of daily weather.
However, for a small subset of forecasts, more slowly evolving climate processes yield some predictable signal that may be
anticipated in advance, occasioning “forecasts of opportunity.” Forecasts of opportunity evolve seasonally, since they are a
function of the seasonally varying jet stream and various remote forcings such as tropical heating. Prior research has dem-
onstrated that for boreal winter, an empirical dynamical modeling technique called a linear inverse model (LIM), whose
forecast skill is typically comparable to operational forecast models, can successfully identify forecasts of opportunity both
for itself and for other dynamical models. In this study, we use a set of LIMs to examine how subseasonal North American
2-m temperature potential predictability and forecasts of opportunity vary from boreal winter through summer. We show
how LIM skill evolves during the three phases of the spring transition of the North Pacific jet}late winter, spring, and
early summer}revealing clear differences in each phase and a distinct skill minimum in spring. We identify a subset of
forecasts with markedly higher skill in all three phases, despite LIM temperature skill that is somewhat low on average.
However, skill improvements are only statistically significant during winter and summer, again reflecting the spring subsea-
sonal skill minimum. The spring skill minimum is consistent with the skill predicted from theory and arises due to a mini-
mum in LIM forecast signal-to-noise ratio.
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1. Introduction

Routinely producing skillful subseasonal (3–8-week lead)
2-m temperature (2mT) and precipitation forecasts remains
difficult for the current generation of dynamical subseasonal
forecast models in all seasons (Pegion et al. 2019; de Andrade
2019). As a result, much attention has been given to identify-
ing the smaller subset of subseasonal forecasts that are useful,
by considering phenomena that impart memory, and therefore
predictability, to the system}so-called forecasts of opportu-
nity (Albers and Newman 2019; Mariotti et al. 2020). These
more skillful forecasts reflect periods of high signal-to-noise
ratio, or when a predictable “signal” overwhelms unpredict-
able “noise” in the system evolution. Predictable signals in
the extratropics can arise through many processes including
tropical–extratropical teleconnections (Winkler et al. 2001),
stratosphere-troposphere interactions (Baldwin et al. 2003;
Butler et al. 2019a; Domeisen et al. 2020; Albers and Newman
2021), and long-lasting soil moisture anomalies (Koster et al.
2011). Which processes are most important for forecasts of op-
portunity is determined by forecast location, target variable,
forecast lead time, and time of year.

A key source of subseasonal predictability in the Pacific–
North American region is tropical diabatic heating (e.g.,
Newman et al. 2003). For example, elevated North American
temperature skill follows certain phases of the Madden–Julian
oscillation (MJO; Madden and Julian 1971; Johnson et al.
2014; Vigaud et al. 2018) and El Niño–Southern Oscillation
(ENSO; Johnson et al. 2014; Wang and Robertson 2018).
However, skill provided by the MJO and ENSO is not cons-
tant at all times of the year, in part because the nature of tropi-
cal convection evolves over the course of the annual cycle.
Convection related to ENSO tends to weaken during spring,
particularly following its mature winter phase, while the extra-
tropical influence of tropical heating via teleconnections varies
due to the annual cycle of the Pacific jet and waveguide
(Newman and Sardeskhmukh 1998). In addition to tropical
heating, stratospheric variability can affect North American
temperatures during winter and early spring before the final
stratospheric warming, with some stratospheric states being as-
sociated with elevated subseasonal temperature forecast skill
(Gerber et al. 2012; Butler et al. 2019b; Domeisen et al. 2020).

Perhaps as a result of these seasonally varying phenomena,
spring is a particularly difficult forecast period. In a recent study,
Albers et al. (2021) found that the ability of the European
Centre for Medium-Range Weather Forecasts Integrated
Forecast System (IFS) to predict variations in the North Pacific
jet decreases markedly between early and late spring. This de-
crease in subseasonal skill could be related to the strong invigo-
ration of the North Pacific storm track that occurs during this
time of year (Breeden et al. 2021), representing an increase in
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unpredictable synoptic variability. Another possibility is that
models have difficulty modeling the smaller spatial scales of
tropical heating that tend to increasingly dominate tropical
variability as spring progresses into summer (Newman and
Sardeshmukh 1998). It is perhaps not surprising then, that
spring temperature predictability has not been extensively
studied compared to winter and summer. In this study, we hy-
pothesize that seasonal changes in both the jet and tropical
heating correspond to a reduction in subseasonal tempera-
ture predictability during spring.

Prior analysis has demonstrated the utility of an empirical-
dynamical linear inverse model (LIM; Penland and Sardeshmukh
1995; Sardeshmukh et al. 2000) to generate subseasonal fore-
casts and objectively identify forecasts of opportunity. During
winter, a LIM can produce 500-hPa geopotential height and
mean sea level pressure forecasts with skill comparable to
the National Centers for Environmental Prediction Climate
Forecast System, version 2 (CFSv2), and IFS for lead times
of 3–6 weeks, while also identifying periods of elevated skill
in its own forecasts and those of the CFSv2 and IFS (Albers
and Newman 2019). A similar LIM produced subseasonal
North Atlantic Oscillation (NAO) index forecasts with skill
comparable to the IFS. In the latter LIM, NAO forecasts of
opportunity were found to be due to SST-related heating
anomalies and downward propagating stratospheric circula-
tion anomalies (Albers and Newman 2021). LIM forecasts
during spring, however, have not been investigated in the pre-
sent literature, nor has 2mT been selected as a target variable.

In this study, we employ a recently introduced method for
tracking the winter-to-summer evolution of the North Pacific
jet, which we use to define the spring state of the jet on a
flow-dependent, rather than calendar day, basis (Breeden
et al. 2021). This approach ensures that the substantial year-
to-year variability in the seasonal cycle of the North Pacific
jet is accounted for, and anomalies developing in similar
mean states are correctly grouped together. Three LIMs,
similar to those used in Winkler et al. (2001) and Newman
et al. (2003), are subsequently developed to produce late
winter, spring and early summer forecasts of North American
2mT. An optimal growth approach to identifying forecasts of
opportunity is employed, which successfully identifies periods
of elevated circulation and 2mT skill. Finally, we compare
observed skill to that expected from theory and compare
the evolution of predictable signal and unpredictable noise
during the three jet phases to better understand the observed
skill evolution.

2. Data and methods

This study uses gridded reanalysis data to construct sepa-
rate LIMs for the winter, spring and summer phases of the
spring transition.

a. Data

Daily mean 200-hPa zonal wind, 200-hPa (C200) and 850-hPa
(C850) streamfunction, 2-m temperature (2mT), and outgoing
longwave radiation (OLR) were accessed from the Japanese
Meteorological Agency 55-year Reanalysis dataset (JRA-55;

Kobayashi et al. 2015) for the years 1959–2018 and months of
January–July. All variables are regridded to 2.58 3 2.58 horizon-
tal resolution. Northern HemisphereC200 andC850, hemispheric
OLR from 208S to 208N, and North American 2mT over land
only, are used to create the LIMs described in section 2c. For
tracking the spring transition of the North Pacific jet (de-
scribed in section 2b), we use 200-hPa zonal wind values
for January–July, with only the 60-yr January–July mean
removed so that the seasonal cycle is retained, following the
method of Breeden et al. (2021). Conversely, anomalies used
in the LIM (section 2c) were calculated by removing the 60-yr
daily climatology, and then applying a 7-day running mean to
isolate weekly variability and minimize high-frequency, synop-
tic variations. Such averaging is consistent with the assump-
tions made by the modeling framework described below
(Newman et al. 2003; Albers and Newman 2019). While it is
possible a long-term trend related to climate change is pre-
sent in the 2mT anomalies used, Wulff et al. (2022) recently
showed that the fraction of 7-day averaged 2mT variance as-
sociated with such a trend was small over North America
for the period 1998–2017. As such, we do not attempt to re-
move any such trend here, though we acknowledge that
forecast skill can arise from many processes on a variety of
time scales.

b. Defining the spring transition

Following the approach in Breeden et al. (2021), we use
the leading empirical orthogonal function (EOF1) and corre-
sponding principal component (PC1) of 200-hPa zonal wind
over the North Pacific domain, which is 1008–2808E, 108–708N
(Fig. 1) to track the seasonality of the North Pacific jet. PC1
is positive during late winter and early spring, decreases
throughout the spring transition, and becomes negative some-
time in May or June. The substantial spread in PC1 early in
the spring transition reflects the high variability in the jet and
storm track at this time of year, and the limitation of using a
single calendar date to define “spring.” Therefore, we instead
use each year’s transition date when PC1 first falls below
10.6s to define the start of the spring phase. Similarly, when
PC1 first falls below 20.6s is used to define the beginning
of the summer phase. The 60.6s threshold was chosen to
have a roughly even number of samples in the three phases
(N = 4986 days in winter, 4055 days in spring and 4103 days
in summer). The threshold 0.6s is used, instead of 0.5s
as in Breeden et al. (2021), to make the number of samples
more even between the three phases (in this study we include
the months of January and July to the winter and summer
phases, respectively, increasing those phases’ number of dates
relative to spring). This difference in threshold does not affect
the composite spring jet structure or LIM skill, although in-
cluding July in the summer phase does weaken the jet magni-
tude in summer (cf. Figs. 1 and 2 of Breeden et al. 2021).

c. Linear inverse model

The LIM is based on the assumption that the dynamical
evolution of the variables in the state vector x [Eq. (1)] can be
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reasonably approximated as a linear system forced by stochas-
tic white noise [Eq. (2)]:

x � (OLR,C200,C850, 2mT), (1)

dx
dt

� Lx 1 Fs: (2)

Equation (2) approximates the evolution of x by assuming
that a time scale separation exists between the predictable,
slowly evolving dynamics represented by L and the fast, rapidly

decorrelating and therefore unpredictable variations repre-
sented by Fs. Here, as in previous studies (Winkler et al. 2001;
Newman et al. 2003; Albers and Newman 2019; Henderson et al.
2020; Breeden et al. 2020), slowly evolving refers to weekly
varying anomalies (consistent with the 7-day running mean ap-
plied to the anomalies in x), and fast refers to shorter synoptic
and mesoscale variations. The matrix L can be determined from
the time-averaged C0 and lagged covariance Cto

statistics of the
state vector [Eq. (3)]:

L � log[C0 ∗ inv(C0)]/to: (3)

To reduce dimensionality, x is constructed from the principal
components (PCs) resulting from empirical orthogonal func-
tion (EOF) analysis of each variable in the state vector, where
enough PCs are retained to capture a majority of variance of
each variable, while retaining a stable model (see Table S1 in
the online supplemental material). A range of retained PCs
was tested, and results are not sensitive to the exact number of
PCs retained in x (not shown). Here a training lag to of 5 days
is used, consistent with prior studies that have shown this train-
ing lag falls within the range to which L is insensitive, within
the constraints of sampling [see Winkler et al. (2001) for a de-
tailed discussion; also Breeden et al.’s (2020) appendix A].
Note that the matrix L, often referred to as the “dynamic oper-
ator,” acts linearly on x but can include both linear relation-
ships and linear approximations to nonlinearities, which may
be included in C0 and Cto

. This is in contrast to, for instance, a
model based upon linearized equations of motion.

1) LIM HINDCASTS

Given initial conditions x(0), a LIM forecast for any lead
time, t, can be generated using L by solving the homogeneous
component of Eq. (2):

x̂(t) � x(0)exp(Lt) � x(0)G(t): (4)

Cross-validated hindcasts are created by removing 10% of
the data, recomputing L and creating forecasts using the portion
of removed data as initial conditions (ICs). To evaluate the
LIM hindcast skill, hindcasts are verified against the untrun-
cated reanalysis anomalies using the anomaly correlation coeffi-
cient (ACC) at each grid point (e.g., Newman et al. 2003).

To determine whether the observed skill evolution during
the three jet phases is consistent with the skill evolution pre-
dicted from the LIM’s theoretical signal-to-noise ratio S
[Eqs. (5)–(7)], the value “theoretical expected skill” r‘(t)
[Eq. (8); Sardeshmukh et al. 2000; Newman et al. 2003] is
calculated and compared to actual forecast skill. The ACC
version of S is a function of forecast lead time t and is cal-
culated at each grid point i, using the diagonal element of
F(t) and E(t), ii (e.g., Newman et al. 2003):

F(t) � 〈x̂(t 1t)x̂(t 1t)′〉, (5)

E(t) � C0 2 G(t)C0G(t)′, (6)

S2(t, i) � F(t)ii
E(t)ii

, (7)

FIG. 1. (a) The composite 200-hPa zonal wind (m s21) based
on periods when (a) PC1 . 0.6s, the “winter phase,” (b) PCI
between 6 0.6s, the “spring phase,” and (c) PCI , 20.6s, the
“summer phase.” (d) The thin lines show PC1 for each year in
the 60-yr JRA55 record, starting from 1 Feb through 27 Jun,
and the thick black line is the 60-yr mean.
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where a prime indicates the transpose, F(t) is the forecast
signal covariance matrix determined at a given lead time,
indicating the strength of the predictable signal in the fore-
casts, and E(t) is the forecast error covariance matrix and
represents lead-dependent, unpredictable “noise.” Following
Sardeshmukh et al. 2000, S2 can be, in turn, used to calculate
expected skill of a perfect infinite member ensemble forecast:

r‘(t, i) �
S2(t, i)

{[S2(t, i) 1 1]S2(t, i)}0:5 : (8)

To understand how the seasonal evolution in the signal and
the noise}which are found to differ}act together to produce
the theoretical expected skill evolution, the quantities F(t)ii,
E(t)ii, and r‘(t, i) will be compared during the three jet phases
for t = 21 days for 2mT.

2) FORECASTS OF OPPORTUNITY

Our approach to identifying forecasts of opportunity will
focus on the signal component of signal-to-noise by anticipat-
ing periods of rapid, potentially predictable 2mT growth. The
LIM is based on the concept that subseasonal anomaly growth
can be modeled through the constructive interference of
evolving non-orthogonal modes in the system that all have
distinct spatial and temporal characteristics (Farrell 1988;
Lacarra and Talagrand 1988; Farrell and Ioannou 1996). If
the eigenmodes of L are non-orthogonal, then transient anom-
aly growth may occur via the constructive interference of the
eigenmodes over a finite period of time [because (2) is asymp-
totically stable, the eigenvalues of L are all negative and the
individual eigenmodes all decay in finite time]. Physically, the
non-orthogonality of L can arise from the presence of asym-
metric interactions in the system and patterns of variability
that involve multiple physical processes evolving on differ-
ent time scales (e.g., the NAO; Albers and Newman 2021).
Particularly relevant here are asymmetries introduced by
shear and zonal asymmetry in the mean state (Farrell 1982;
Boyd 1983), as observed in the North Pacific jet exit region
(Mak and Cai 1989; Breeden and Martin 2018). The most
rapidly growing patterns that amplify via transient growth
can be determined using the eigendecomposition of system
growth [Eq. (9); Penland and Sardeshmukh (1995); Newman
et al. (2003)]. System growth m(t) can be constrained to occur
under a particular initial or final state, which can be set using
the initial and final “norm” kernels D and N, respectively:

m(t) � x(t)TNx(t)
x(0)Dx(0) � x(0)G(t)TNG(t)x(0)

x(0)TDx(0) , (9)

G(t)TNG(t) � m(t)v(t): (10)

The corresponding eigenvalues m(t) determined from Eq. (10)
represent the system growth rate associated with the evolution of
the corresponding initial patterns contained in the eigenvectors
v(t). The eigenmodes can be sorted from highest to lowest
growth rate using the eigenvalues, and those with the strongest
growth might be expected to be the most predictable. Growth is

maximized for a prescribed period of t days and without any
constraint on the initial pattern, for which D is set to the identity
matrix, as done in past studies (e.g., Sardeshmukh et al. 1997;
Newman et al. 2003). Commonly used norms include the L2 or
“energy” norm, in which N is also set to the identity matrix. For
this study, our final norm N maximizes North American 2mT
anomaly growth, which is specified by beginning with the iden-
tity matrix and setting the diagonals corresponding to the OLR,
C200, C850 PCs to zero, so that only 2mT amplitude is con-
strained to amplify. The resultant “optimal patterns” (OPs)
we describe in section 3 are interpreted as the first and second
patterns most conducive to 2mT growth, and will be referred to
as OP1 and OP2, respectively. For each phase of the spring
transition, we will examine the OP1 and OP2 maximizing 2mT
growth over a 21-day period, which is the midpoint of the week
3–4 forecast period.

We identify forecasts of opportunity using the optimal
initial conditions, determined from the eigenvectors of Eq. (10),
which maximize 2mT growth of either OP1 or OP2. Specifi-
cally, we assume that forecasts initialized when the initial at-
mospheric state strongly resembles one of the optimal initial
conditions associated with either OP1 and OP2 will be fol-
lowed by periods of elevated forecast skill. The hypothesized
correspondence between strong projections onto the optimal
initial conditions, and higher ACC, will be tested for the three
phases of the spring transition using OP1 and OP2 for each
phase, and the corresponding optimal initial conditions OP1-IC
and OP2-IC. To identify forecasts of opportunity, we use the
OP-ICs corresponding to a t at the midpoint of the forecast lead
time, for example, for week 3–4 forecasts (days 15–28), we de-
termine OP-IC using a lead time t = 21 days. Note that, while
this lead time varies according to the forecast lead time of
interest (weeks 3–4 or 5–6), the OPs themselves do not
change markedly across these lead times, meaning the OPs
that maximize 2mT growth at 21 and 35 days are not substan-
tially different. For this reason, we show only the 21-day
patterns Figs. 2–4).

The 20% of dates with the strongest projection}positive
or negative}onto a given OP-IC is selected as forecasts of
opportunity, corresponding to 997 dates in winter, 811 in
spring, and 820 in summer. The statistical significance of skill
changes for each subset of forecasts is compared against the
skill of the remaining 80% of forecasts. Significance at the
95% confidence level is determined non-parametrically using
bootstrapping, where the two groups of forecasts are resam-
pled at the smaller sample size of the two groups, after it is
reduced by a factor of 5 to account for autocorrelation in
the 2mT field, which reduces the number of truly indepen-
dent samples. Five is chosen because for 2mT, 5 days is the
lag at which autocorrelation drops below 0.5 over North
America. ACC is then recomputed for that subsample, and
the process repeated 5000 times to establish confidence in-
tervals for ACC at each grid point. Finally, we note that the
forecasts that are all initialized during a particular jet phase
are evaluated together, since they are generated using the
same LIM, even if the forecast dates verify during a differ-
ent phase.
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3. Results

The three phases of the spring transition of the North
Pacific jet show its seasonal evolution from the strong, win-
tertime jet to a weaker, split jet during spring, and finally, a
very weak summer jet structure (Fig. 1). The onset of the
spring phase coincides with an invigoration and northward
shift of the North Pacific storm track, which is followed by
relatively quiescent storm track conditions during summer
(Breeden et al. 2021). The winter-to-spring transition is
highly variable but typically occurs in late March or April,
while the spring-to-summer transition is less variable and
generally occurs in late May (Fig. 1d). In section 3a, we
compare the OP1 and OP2 patterns during each jet phase,
revealing the patterns are all notably different. Section 3b
examines the corresponding evolution of LIM 2mT hind-
cast skill, and evaluates the success in using OP1-IC and
OP2-IC to identify forecasts of opportunity. To better un-
derstand the observed forecast skill evolution, section 3c
considers theoretical expected skill and the seasonal evolu-
tion of the signal [Eq. (5)] and the noise [Eq. (6)].

a. Optimal 2-m temperature structures

Under the constraint to maximize North American 2mT
anomaly growth at a 21-day lead time [Eq. (10)], each phase
of the jet is associated with different heating and circulation
structures (Figs. 2–4). Note that due of the linearity of the
LIM, equal and opposite patterns (e.g., warm anomalies in-
stead of cold anomalies in Fig. 2b) correspond to equal and
opposite signs of all variables.

During the winter phase (Fig. 2), OP1-IC involves an
upper-level ridge in the east Pacific and negligible 2mT
anomalies; 21 days later, widespread cold anomalies de-
velop in conjunction with a blocking anticyclone (positive
C200 anomaly) upstream over the central Pacific and the as-
sociated cold air advection on the ridge’s eastern flank. Note
that while this pattern maximizes 2mT growth at a 21-day
lead time, the 2mT anomalies are strongest in magnitude at
day115, indicating that the inherent time scale of this pattern
is shorter than 21 days, but still produces substantial anoma-
lies at day 121. A negative C200 anomaly is located above
the cold 2mT anomalies, reflecting an equivalent barotropic

FIG. 2. (a)–(d) First and (e)–(h) second optimal patterns (OP1, OP2) maximizing North American 2-m temperature growth, over a
21-day period, during the winter jet phase. The color shading in (a), (b), (e), and (f) is anomalous 2mT (K), and the black contours are
200-hPa C200 anomalies (positive in solid, negative in dashed). The contour interval for C200 is 66 3 106 kg m2 s21 contoured at intervals
of 63 106. The color shading in (c), (d), (g), and (h) is anomalous OLR (Wm22).
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structure, as will be observed over many evolved OPs. Mean-
while, positive OLR anomalies (representing suppressed
convection) are located over the eastern Indian Ocean and
central Pacific at day 0, with the former propagating east-
ward with time and the latter remaining stationary (Fig. S1b).
Much of the evolution of OP1 resembles that of North Pacific
blocking, whose subseasonal evolution can be well produced
by a LIM (Breeden et al. 2020). The suppressed convection in
the central Pacific is suggestive of La Niña conditions, which
are known to increase North Pacific blocking (Renwick and
Wallace 1996). OP2 is associated with a couplet of tempera-
ture anomalies with centers over Alaska and the central
United States, with warm Alaskan temperatures located be-
neath an upper-level, high-latitude anticyclone and cold tem-
peratures located beneath a broad region of negative C200

anomalies (Fig. 2f). In contrast to OP1, OLR OP2-IC involves
anomalous convection in the central Pacific, which decays by
day 120, when it is replaced by positive OLR anomalies
signifying suppressed convection (Figs. 2g,h; Fig. S1e). Both
OP1 and OP2 during winter involve the coincidence of ano-
malously cold temperature developing over most of North
America (excluding Alaska for OP2) with a stationary region

of suppressed convection (positive OLR anomalies) over the
central/eastern Pacific (Figs. S1b, S1e).

During the spring jet phase (Fig. 3), the 2mT and C200

21-day evolved anomalies resemble the OP structures in winter
(cf. Figs. 2b,3b and 2f,3f), but with overall weaker and northward-
shifted temperature anomalies}coincident with the northward
shift of the jet}and the development of weak warm anomalies
over the southwestern United States. Interestingly, the OLR
optimal initial conditions differ substantially, with the disap-
pearance of stationary OLR anomalies in the central Pacific
from winter to spring (Figs. 3c,d; Figs. S2a–c). This lack of per-
sistent, ENSO-like convection in spring is consistent with the
frequently observed decay of ENSO events at this time of
year, meaning the associated teleconnection likely weakens at
this as well. Instead, tropical OLR during spring OP1 involves
a small-scale, stationary region of positive OLR anomalies
(Fig. S2b) reflecting changes in the optimal heating conditions
for 2mT growth from winter to spring with, it appears, signifi-
cant changes to the predictable 21-day 2mT patterns. OP2 dur-
ing spring also resembles OP2 in winter, although again with
differences in the amplitude and precise location of the tem-
perature andC200 anomalies.

FIG. 3. As in Fig. 2, but for the first and second spring optimal growth structures.
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The OPs that evolve in summer differ substantially from
those in winter and spring (Fig. 4). In summer, OP1 involves
cyclonicC200 anomalies over the central Pacific, North America,
and North Atlantic that develop along with cold temperature
anomalies over central North America (Figs. 4a,b), in contrast
to the mid and high-latitude ridging observed in the North
Pacific during winter and spring. Positive OLR anomalies
form over the Maritime Continent and are mainly station-
ary from initialization to past 40 days, peaking in strength
from days 115 to 135 (Figs. 4c,b; Figs. S3a–c). While there
is some consistency between cold temperatures and sup-
pressed convection in the Indian Ocean and Maritime Con-
tinent between all three phases’ OP1 patterns, the C200

response differs in summer with generally cyclonic anoma-
lies observed, suggesting the nature of the summer teleconnec-
tion differs from winter and spring, as found in Newman et al.
(2003) for winter and summer. Finally, OP2 in summer in-
volves development of a small-scale, zonally oriented wave
train over the central Pacific and North America, while tropi-
cal OLR, similar to OP1, involves a persistent positive anom-
aly around 2608–3008W (Figs. 4e–h). Summer OP2 is one of
the least persistent C200 patterns and displays smaller-scale
waves, with the strongest 2mT anomalies also developing at a

shorter lead time, around day 110 (Fig. S3f). Overall, from
winter to summer, the OP-ICs progressively shrink in zonal
wavelength, consistent with the monthly evolution of North
American height sensitivities to remote tropical heating found
by Newman and Sardeshmukh (1998).

b. 2-m temperature skill evolution

Subseasonal temperature skill evolves during the three
phases of the spring transition, but in all phases, periods of ele-
vated forecast skill are identifiable ahead of time using OP1-IC
and OP2-IC. On average, week 3–6 2mT skill from LIM fore-
casts is low (Figs. 5, 6), but similar to dynamical forecast models
(Pegion et al. 2019; Wang and Robertson 2018). We find that
temperature skill is greatest during winter, reaching a minimum
in spring before increasing again in summer (Figs. 5a–c).

Nonetheless, even during the spring minimum, some skill
is present in western North America from Alaska to Mexico
(Fig. 5b). More encouraging, however, is that in all three
phases, skill increases markedly for the forecasts initialized dur-
ing the 20% of dates with the strongest projection}positive or
negative}onto OP1-IC (Figs. 5d–f). For certain regions, skill
is significantly different from the skill of the remaining 80% of
forecasts during winter and summer, but not spring. Similarly,

FIG. 4. As in Fig. 2, but for the first and second summer optimal growth structures.
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skill increases following strong projections onto OP2-IC, albeit
over a smaller area during spring compared to winter and sum-
mer (Figs. 5g–i). The regions of highest skill generally coincide
with the areas of strong OP growth, further supporting the idea
that predictable anomaly growth is associated with the en-
hanced skill (cf. Figs. 2b,5d; Fig. 4b, Fig. 5g). However, in
spring, even for OP1 the spatial extent of ACC is confined
to western North America, suggesting something is prevent-
ing strong optimal 2mT growth at this time.

For weeks 5–6 forecasts, skill is lower than weeks 3–4
(Figs. 6a–c), yet there are still regions with reasonably high
skill (correlations between 0.4 and 0.6), particularly during sum-
mer for OP1 (Fig. 6f). Furthermore, spring skill is similar at
weeks 5–6 and is statistically significantly different compared to
the remaining forecasts for both the OP1 and 2 subsets in some
areas, though these are still spatially confined to coastal areas
where it is possible high-frequency fluctuations are weaker due
to the nearby water, enhancing the impact of the predictable
signal (Figs. 6e,h).

It thus appears that the predictable temperature patterns,
and their optimal initial conditions, are indeed associated with

an increase in the predictable “signal” in subseasonal forecasts,
leading to an increase in skill. There are notable differences in
when and where skill maximizes (Figs. 5, 6) during each of the
three jet phases, but western North America is broadly the re-
gion with the most consistent skill. The spring phase displays
the lowest overall skill and the weakest skill increase associated
with forecasts of opportunity using OP1 and OP2, consistent
with prior studies that have found a reduction in subseasonal
forecast skill over the Pacific–North American region in spring
(Wang and Robertson 2018; Albers et al. 2021).

c. Theoretical expected skill

Does the spring skill minimum reflect a change in predictable
signal, unpredictable noise, or some combination of both? To
address this question, we consider the theoretical expected skill,
r‘ [Eq. (8)], for the three jet phases using the 21-day forecast
signal-to-noise ratio (Fig. 7).

The r‘ evolution and spatial characteristics are quite simi-
lar to the observed ACC (Figs. 5a–c), though r‘ is higher in
all phases, as actual skill may be lower due to model imperfec-
tions or initial condition errors (Newman et al. 2003). During

FIG. 5. Anomaly correlation coefficient (ACC) for weeks 3–4 temperature forecasts. ACC using all forecasts during (a) winter,
(b) spring, and (c) summer. (d)–(f) ACC for the 20% of forecasts with the strongest projection onto the optimal initial conditions associ-
ated with OP1, and (g)–(i) ACC for the 20% of forecasts with the strongest projection onto the optimal initial conditions associated with
OP2. Stippling in (d)–(i) indicates where skill changes are significant at the 95% confidence level. The mean ACC values in (a)–(c) are
0.21, 0.14, and 0.15, respectively.
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the winter phase, both the signal and noise components
have the greatest amplitude, with the signal extending far-
ther southwestward and accounting for the skill maximum
located at more southern latitudes (Figs. 7a,d,g). In spring,
there is a minimum in r‘ over most of North America, ex-
cept in the far northern regions including Alaska, where the
observed spring skill is also highest (cf. Fig. 7b, Fig. 5b). The
signal component reaches its minimum amplitude at this
time, while noise has diminished as well but to a lesser ex-
tent, overall reducing r‘ in spring compared to winter and
summer.

The relatively elevated noise in spring in the interior of
the continent could account for the lack of ACC increase
during forecasts of opportunity associated with OP1 and OP2
(Figs. 5e,h, 6e,h,). In the summer phase, signal increases in
the central United States compared to spring, while noise
continues to weaken, driving up the signal-to-noise ratio (S2)
and r‘ to peak values in the interior continent (Fig. 7c). As
such, it appears the observed skill minimum in spring is
consistent with theoretical expected skill and the evolution of
predictable signal and unpredictable noise components of the
forecasts. It is notable that the signal and noise reach their
minimum amplitudes at different times of the year, though
the underlying mechanism for their different temporal evolu-
tions is not well understood at present.

4. Discussion and conclusions

In this study, we document predictable North American 2mT
patterns, their evolution during three phases of the seasonal
cycle, and test the hypothesis that they can be used to anticipate
subseasonal forecasts of opportunity. We find that notably
different patterns of upper-level circulation and tropical OLR
maximize 2mT growth during the winter, spring and summer
phases of the North Pacific jet. Some patterns are familiar, or
contain familiar elements, such as OP1 in winter and the PNA
pattern, suggested by the quadrupole pattern of C200 anomalies
in Fig. 2b. The associated tropical heating evolution maximizing
2mT growth differs in each phase as well, but overall reveals a
role for both stationary and propagating heating anomalies in
the Indian Ocean, Maritime Continent and central Pacific. The
coincidence of strong, large-scale and persistent tropical heating
anomalies during winter and summer, and more skillful forecasts
of opportunity for 2mT, is consistent with past research linking
tropical–extratropical teleconnections to enhanced subseasonal
predictability (e.g., Albers and Nemwan 2021). As such, ENSO,
the MJO, and perhaps the Indian summer monsoon, may all be
influencing subseasonal 2mT amplification, though further anal-
ysis is needed to confirm these potential links.

In all three phases, we are able to leverage knowledge of
these predictable patterns to anticipate, at the time of forecast

FIG. 6. As in Fig. 5, but for weeks 5–6 forecasts. Mean values for (a)–(c) are 0.13, 0.14 and 0.15, respectively.
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initialization, forecasts of opportunity for 2mT, with the most
success in winter and summer. Skill reaches a minimum in
spring, and over much of North America, skill remains low,
even during forecasts of opportunity, potentially reflecting
higher variability in these forecasts that rendered skill changes
mostly statistically insignificant. A spring skill minimum is
also evident in theoretical expected skill (Fig. 7), indicating a
reduced signal-to-noise ratio during spring that obscures pre-
dictable anomaly growth and renders subseasonal spring fore-
casts generally less skillful than those initialized during winter
and summer.

Our results are consistent with the minimum in weeks 3–4
2mT skill found over CONUS in March–May (MAM) in the
NCEPmodel by Wang and Robertson (2018). The same study
showed the IFS showed a minimum in skill during MAM as
well, but only over portions of North America, most notably
the central and eastern United States. However, we note that
since March includes at least a portion of the winter phase of
the jet during most years (Fig. 1), a comparison to MAM skill
and the spring skill evaluated in this study may not be the
most direct. The spring minimum found in this study is also
consistent with the skill reduction in the IFS subseasonal

North Pacific jet forecasts during April and May, compared to
March, that is shown by Albers et al. (2021), suggesting the
spring minimum in skill is not limited to the LIM framework,
but likely reflects a true limitation to subseasonal predictabil-
ity in the PNA region.

Predictable winter and summer 2mT patterns are associ-
ated with stationary and persistent tropical convective heating
anomalies, though they differ in heating location and the asso-
ciated circulation and 2mT structures. The OLR evolution
during spring OPs was found to be comparatively weak. The
strong, persistent heating sources observed in winter and sum-
mer could be a key element to these phases’ enhanced subsea-
sonal 2mT skill, particularly during forecasts of opportunity
(Mayer and Barnes 2021). Furthermore, the wintertime strato-
spheric polar vortex could contribute to the elevated winter
signal observed in Fig. 7, given its known influence on the cir-
culation (Albers and Newman 2021) and surface temperature
(Butler et al. 2019a,b; Domeisen et al. 2020). To dynamically
isolate these remote influences from tropical heating and the
stratosphere, future work could employ the decoupling ap-
proach of Albers and Newman (2021) to reexamine subseaso-
nal 2mT forecast skill and forecasts of opportunity. The same

FIG. 7. (a)–(c) The 21-day expected skill [ACC; Eq. (8)] calculated for the three phases of the spring transition. (d)–(f) The
21-day forecast signal covariance component of expected skill [F; K2; Eq. (5)] and (g)–(i) the 21-day error covariance component
of expected skill [E; K2; Eq. (6)].

MONTHLY WEATHER REV I EW VOLUME 1502626

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:20 PM UTC



decoupling approach could also be used to examine if any
modes exhibit a long-term trend associated with climate change,
and how that mode, if identified, contributes to 2mT skill.

Despite the presence of stationary tropical heating in both
phases, the OPs that develop in winter and summer differ
markedly, including their spatial structure, with winter OPs
producing larger-scale waves than summer OPs. Still, both are
associated with periods of elevated forecast skill, suggesting
smaller-scale patterns are not necessarily less predictable than
large-scale patterns. Summer also benefits from the lowest
noise amplitude of the three phases, so while the overall am-
plitude of the signal in summer is far weaker than in winter,
the patterns are still predictable, as supported by the success
of the forecasts of opportunity in summer (Figs. 5, 6).

Changes in remote SST and stratospheric forcing are not
the only potential underlying reasons for the spring minimum
in skill. For example, Breeden et al. (2021) found an invigo-
rated storm track during spring, which could mean that synop-
tic variability}approximated with the noise forcing term in
Eq. (2)}is too high to realize the signal associated with OP1
or OP2, as suggested in Fig. 7. Alternatively, variables crucial
for spring prediction could be missing from the state vector, al-
though to have a big impact on model performance they would
have to contain relevant information that is not implicitly cap-
tured in the original variables. Still, we note that the LIMs
developed here are relatively simple, and the influence of ad-
ditional variables can be easily tested. Finally, the LIMs are
constructed using the fluctuation–dissipation relationship, as-
suming that the covariance of the system is constant with time
(Penland and Sardeshmukh 1995). It is possible that, even de-
fining spring on a flow-dependent basis as done in this study,
that the mean state and variance are changing too rapidly dur-
ing the transition season to be modeled effectively by the LIM
under this assumption. Future work may consider if the spring
minimum is evident in alternative models not based on such
assumptions, to better discern what factors most strongly im-
pacts subseasonal skill at this time of year.
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